3.407 \(\int \frac{(d+e x)^3 (a+b x^2)^p}{x^3} \, dx\)

Optimal. Leaf size=168 \[ -\frac{d \left (a+b x^2\right )^{p+1} \left (3 a e^2+b d^2 p\right ) \, _2F_1\left (1,p+1;p+2;\frac{b x^2}{a}+1\right )}{2 a^2 (p+1)}+\frac{e x \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (a e^2+3 b d^2 (2 p+1)\right ) \, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};-\frac{b x^2}{a}\right )}{a}-\frac{3 d^2 e \left (a+b x^2\right )^{p+1}}{a x}-\frac{d^3 \left (a+b x^2\right )^{p+1}}{2 a x^2} \]

[Out]

-(d^3*(a + b*x^2)^(1 + p))/(2*a*x^2) - (3*d^2*e*(a + b*x^2)^(1 + p))/(a*x) + (e*(a*e^2 + 3*b*d^2*(1 + 2*p))*x*
(a + b*x^2)^p*Hypergeometric2F1[1/2, -p, 3/2, -((b*x^2)/a)])/(a*(1 + (b*x^2)/a)^p) - (d*(3*a*e^2 + b*d^2*p)*(a
 + b*x^2)^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, 1 + (b*x^2)/a])/(2*a^2*(1 + p))

________________________________________________________________________________________

Rubi [A]  time = 0.2215, antiderivative size = 168, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {1807, 764, 266, 65, 246, 245} \[ -\frac{d \left (a+b x^2\right )^{p+1} \left (3 a e^2+b d^2 p\right ) \, _2F_1\left (1,p+1;p+2;\frac{b x^2}{a}+1\right )}{2 a^2 (p+1)}+\frac{e x \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (a e^2+3 b d^2 (2 p+1)\right ) \, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};-\frac{b x^2}{a}\right )}{a}-\frac{3 d^2 e \left (a+b x^2\right )^{p+1}}{a x}-\frac{d^3 \left (a+b x^2\right )^{p+1}}{2 a x^2} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^3*(a + b*x^2)^p)/x^3,x]

[Out]

-(d^3*(a + b*x^2)^(1 + p))/(2*a*x^2) - (3*d^2*e*(a + b*x^2)^(1 + p))/(a*x) + (e*(a*e^2 + 3*b*d^2*(1 + 2*p))*x*
(a + b*x^2)^p*Hypergeometric2F1[1/2, -p, 3/2, -((b*x^2)/a)])/(a*(1 + (b*x^2)/a)^p) - (d*(3*a*e^2 + b*d^2*p)*(a
 + b*x^2)^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, 1 + (b*x^2)/a])/(2*a^2*(1 + p))

Rule 1807

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[(R*(c*x)^(m + 1)*(a + b*x^2)^(p + 1))/(a*c*(m + 1)), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rule 764

Int[(x_)^(m_.)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[f, Int[x^m*(a + c*x^2)^p, x]
, x] + Dist[g, Int[x^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, f, g, p}, x] && IntegerQ[m] &&  !IntegerQ[2
*p]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 65

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)*Hypergeometric2F1[-m, n +
 1, n + 2, 1 + (d*x)/c])/(d*(n + 1)*(-(d/(b*c)))^m), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Inte
gerQ[m] || GtQ[-(d/(b*c)), 0])

Rule 246

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^Fr
acPart[p], Int[(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILt
Q[Simplify[1/n + p], 0] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 245

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/n, 1/n + 1, -((b*x^n)/a)],
x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILtQ[Simplify[1/n + p], 0] && (IntegerQ[p
] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{(d+e x)^3 \left (a+b x^2\right )^p}{x^3} \, dx &=-\frac{d^3 \left (a+b x^2\right )^{1+p}}{2 a x^2}-\frac{\int \frac{\left (a+b x^2\right )^p \left (-6 a d^2 e-2 d \left (3 a e^2+b d^2 p\right ) x-2 a e^3 x^2\right )}{x^2} \, dx}{2 a}\\ &=-\frac{d^3 \left (a+b x^2\right )^{1+p}}{2 a x^2}-\frac{3 d^2 e \left (a+b x^2\right )^{1+p}}{a x}+\frac{\int \frac{\left (2 a d \left (3 a e^2+b d^2 p\right )+2 a e \left (a e^2+3 b d^2 (1+2 p)\right ) x\right ) \left (a+b x^2\right )^p}{x} \, dx}{2 a^2}\\ &=-\frac{d^3 \left (a+b x^2\right )^{1+p}}{2 a x^2}-\frac{3 d^2 e \left (a+b x^2\right )^{1+p}}{a x}+\frac{\left (d \left (3 a e^2+b d^2 p\right )\right ) \int \frac{\left (a+b x^2\right )^p}{x} \, dx}{a}+\frac{\left (e \left (a e^2+3 b d^2 (1+2 p)\right )\right ) \int \left (a+b x^2\right )^p \, dx}{a}\\ &=-\frac{d^3 \left (a+b x^2\right )^{1+p}}{2 a x^2}-\frac{3 d^2 e \left (a+b x^2\right )^{1+p}}{a x}+\frac{\left (d \left (3 a e^2+b d^2 p\right )\right ) \operatorname{Subst}\left (\int \frac{(a+b x)^p}{x} \, dx,x,x^2\right )}{2 a}+\frac{\left (e \left (a e^2+3 b d^2 (1+2 p)\right ) \left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p}\right ) \int \left (1+\frac{b x^2}{a}\right )^p \, dx}{a}\\ &=-\frac{d^3 \left (a+b x^2\right )^{1+p}}{2 a x^2}-\frac{3 d^2 e \left (a+b x^2\right )^{1+p}}{a x}+\frac{e \left (a e^2+3 b d^2 (1+2 p)\right ) x \left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p} \, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};-\frac{b x^2}{a}\right )}{a}-\frac{d \left (3 a e^2+b d^2 p\right ) \left (a+b x^2\right )^{1+p} \, _2F_1\left (1,1+p;2+p;1+\frac{b x^2}{a}\right )}{2 a^2 (1+p)}\\ \end{align*}

Mathematica [A]  time = 0.130246, size = 174, normalized size = 1.04 \[ -\frac{\left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (x \left (d \left (a+b x^2\right ) \left (\frac{b x^2}{a}+1\right )^p \left (3 a e^2 \, _2F_1\left (1,p+1;p+2;\frac{b x^2}{a}+1\right )-b d^2 \, _2F_1\left (2,p+1;p+2;\frac{b x^2}{a}+1\right )\right )-2 a^2 e^3 (p+1) x \, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};-\frac{b x^2}{a}\right )\right )+6 a^2 d^2 e (p+1) \, _2F_1\left (-\frac{1}{2},-p;\frac{1}{2};-\frac{b x^2}{a}\right )\right )}{2 a^2 (p+1) x} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)^3*(a + b*x^2)^p)/x^3,x]

[Out]

-((a + b*x^2)^p*(6*a^2*d^2*e*(1 + p)*Hypergeometric2F1[-1/2, -p, 1/2, -((b*x^2)/a)] + x*(-2*a^2*e^3*(1 + p)*x*
Hypergeometric2F1[1/2, -p, 3/2, -((b*x^2)/a)] + d*(a + b*x^2)*(1 + (b*x^2)/a)^p*(3*a*e^2*Hypergeometric2F1[1,
1 + p, 2 + p, 1 + (b*x^2)/a] - b*d^2*Hypergeometric2F1[2, 1 + p, 2 + p, 1 + (b*x^2)/a]))))/(2*a^2*(1 + p)*x*(1
 + (b*x^2)/a)^p)

________________________________________________________________________________________

Maple [F]  time = 0.526, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( ex+d \right ) ^{3} \left ( b{x}^{2}+a \right ) ^{p}}{{x}^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3*(b*x^2+a)^p/x^3,x)

[Out]

int((e*x+d)^3*(b*x^2+a)^p/x^3,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{3}{\left (b x^{2} + a\right )}^{p}}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(b*x^2+a)^p/x^3,x, algorithm="maxima")

[Out]

integrate((e*x + d)^3*(b*x^2 + a)^p/x^3, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (e^{3} x^{3} + 3 \, d e^{2} x^{2} + 3 \, d^{2} e x + d^{3}\right )}{\left (b x^{2} + a\right )}^{p}}{x^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(b*x^2+a)^p/x^3,x, algorithm="fricas")

[Out]

integral((e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x + d^3)*(b*x^2 + a)^p/x^3, x)

________________________________________________________________________________________

Sympy [C]  time = 36.8128, size = 150, normalized size = 0.89 \begin{align*} - \frac{3 a^{p} d^{2} e{{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, - p \\ \frac{1}{2} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{x} + a^{p} e^{3} x{{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, - p \\ \frac{3}{2} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )} - \frac{b^{p} d^{3} x^{2 p} \Gamma \left (1 - p\right ){{}_{2}F_{1}\left (\begin{matrix} - p, 1 - p \\ 2 - p \end{matrix}\middle |{\frac{a e^{i \pi }}{b x^{2}}} \right )}}{2 x^{2} \Gamma \left (2 - p\right )} - \frac{3 b^{p} d e^{2} x^{2 p} \Gamma \left (- p\right ){{}_{2}F_{1}\left (\begin{matrix} - p, - p \\ 1 - p \end{matrix}\middle |{\frac{a e^{i \pi }}{b x^{2}}} \right )}}{2 \Gamma \left (1 - p\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3*(b*x**2+a)**p/x**3,x)

[Out]

-3*a**p*d**2*e*hyper((-1/2, -p), (1/2,), b*x**2*exp_polar(I*pi)/a)/x + a**p*e**3*x*hyper((1/2, -p), (3/2,), b*
x**2*exp_polar(I*pi)/a) - b**p*d**3*x**(2*p)*gamma(1 - p)*hyper((-p, 1 - p), (2 - p,), a*exp_polar(I*pi)/(b*x*
*2))/(2*x**2*gamma(2 - p)) - 3*b**p*d*e**2*x**(2*p)*gamma(-p)*hyper((-p, -p), (1 - p,), a*exp_polar(I*pi)/(b*x
**2))/(2*gamma(1 - p))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{3}{\left (b x^{2} + a\right )}^{p}}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(b*x^2+a)^p/x^3,x, algorithm="giac")

[Out]

integrate((e*x + d)^3*(b*x^2 + a)^p/x^3, x)